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Abstract. We conctruct statistical models by the assumption that 

->$. I certain statistics or $-algebras are sufficient for the model. This point 
I 

of view has been developed especially by Lauritzen and has led in 
I connection with the notion of partial sufficiency to very interesting 

1 characterization results of dc Finetti type, In this paper we investigate 
some consequences for the estimation and test theory of models 
of this type. 

I. Introduction. A general formulation of de Finetti's theorem is the 
following: 

If 
m 

(a, 4 = @ (X, a) 
i = l  

is a product of Polish spaces and P E M1 (8, d)  is an exchangeable probability 
measure on (B, d), then conditionally on the exchangeable a-algebra 
do c d, P is i.i.d. and do is suiTicient for the set 9 of all exchangeable 
probability measures. 

The extreme points of B are given by the infinite products Q("), 
Q E M1 (X, a) and there holds a corresponding integral representation. Exten- 
sions of this result, including a broad field of applications, have been proved 
under the notion of partial sufficiency; the role of do then is taken by the 
partial exchangeable cr-field. The importance of the sufficiency aspect has been 
pointed out in full generality by Dynkin 141. Lauritzen [63 pointed out the 
relevance of the saciency and partial sufficiency aspect for the construction of 
statistical models leading especially to a general characterization of exponential 
families. Diaconis and Freedman [23, [3] showed that many important 
characterization results can be established in this frame work, so e.g. the 
characterization of orthogonally invariant distributions on (52, st) = (R", 8") 
as mixtures of i.i.d. N ( 0 ,  n2) sequences. 



Let now (8, d) be any measure' space, let do c d be a sub a-algebra and 
K  be a Markov-kernel from (a, do) to (8, sf), K,: = K (a, .), ctl E a. Define 

the set of all probability measures on (a, d)  such that K is a regular 
conditional distribution of P on do. If T: (0, d) - (Y, a) is a surjective 
mapping, (c) for all t E I: and if K is a Markov kernel from (Y, $3) to 
(0, d), then with Kt:  = K (t, .) and do = a (T)  c d, the a-algebra generated 
by T we use the notaJi~n in (1) also for the factorized kernel and defme in this 
case- 

(2) @(K): = ( ~ ~ M l ( 8 , d ) ;  K g =  P ( - I T =  t ) [ P T ] ) .  

By definition P(K)  is the largest class 9 of probability measures on (a, d), 
such that do resp. Tare suficient for B and K is a conditional distribution 
given do resp. T I:(@ is called the maximal fomily generated b y  K by 
Lafitzen [6] considering the discrete case. It seems to be not a severe 
restriction from the point of view of possible applications to restrict to (regular) 
conditional distributions. 

In section 2 we introduce some subsets of'B(K) and extend some basic 
relations for these models-due to Lauritzen [6] in the discrete case. Further- 
more, we determine the total variation distance between two different maximal 
families and describe the tangent cone of B ( K ) .  In section 3 we derive some 
basic results for the testing theory of these models and establish in section 
4 some construction methods for optimal MVU estimators in models related to 
9 (K) .  The main point in these results is to establish the relation to optimality 
within the more simple conditional models. 

2. Models admitting sufficient statistics. If K is a Markov kernel from 
(X, do) to ( X ,  d), then a natural question is, whether K is the conditional \ 

distribution of any P given do. The following lemma uses a well known 
property of conditional expectations for the characterization. There are several 
related characterizations of conditional expectation operators by positivity and 
contraction properties in the literature (cf. Neveu [$I). 

LEMMA 1. B ( K )  + 0 e- 3Po EM' ( X ,  do) such that for f E a, (d), 
g EL@, (do) - the bounded d resp. do measurable functions - 

(3) K Cfs) = s K f  CPol. 

P r o  of. "-" If P E B(K), then define Po: = P / d , .  Since 

K f  (4 = Sf (4 K* (ax) E Bb (A019 

(3) is a well known property of conditional expectations. 
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"+" Define P:  = KP,, i.e. P (A) = K, (A) Po (dm), A ~ d .  By (3), K' f 
= K ( K f )  = (Kf) (K1) = Kf,  i.e. K' = K is a projection. Therefore, E, fg 
= JK Cfg) dP, = lg (~f) dP0 = Sg (K'S) dPo = JK b K f )  dPo = Jg (Kf) dP, by 
definition of P. This .implies that K f  = E,(f Id,). 

We assume in the following that each occurring Markov kernel K satisfies 
(3) for all Po E M 1  (a, do) and call kernels K with this property full conditional 
kernels. For full conditional kernels do = { A E ~ ;  1, = Kl,); under (3) this 
equality holds P = KP, almost surely and we would have to restrict in the 
following to the subclass of all elements of B(K) dominated by-P = KP,. If 
K is a Markov kernel--from (Y, W) to (52, d), T(Q,  d)+(Y, W) as in the 
introduction, then K is called a full conditional kernel (given T)  iff, for all t E T: 
K,(T= t) = 1. 

For M c M1 (9, d o )  define now 

(4) B ( K ,  Ad): = (P,: = K,;  p~ M ) .  

PROWSITION 2. If M c M1 (0 ,  do), then: 
1. do is suficient for 9 ( K ,  M). 
2. S(K) = B(K, M1(9, d,)). 
3. M (Q, do) + 9 (K) is bijective; the inverse mapping is the retrac- 

p + P , = K p  

tion P+ P/d,. 
4. B ( K )  = { P E M ~ ( B ,  d); P = KP). 
Proof .  1. In the proof of Lemma 1 it was shown that K. = P, (- Id,) for 

,UE M, i.e. the sufficiency of do for B(K, M). 
2, 3,4.  If P E B (K), then K = P Id,) and therefore, with Po: = P/do ,  

P = KP, = KP, is. P E B (K, M1 (a, do)). This implies: 9 (K) c B (K, M1 (0, do)) 
and 9 ( K )  c {P E M1 (Q, 4; P = KP). The converse inclusions follows from 1. 
If ,u E M1 (a, d o )  and A E d o ,  then 

P, (A) = @, (4 P (dm) = JIA P (dm) = P (A), ~ 

i.e.' P , d ,  = p. Therefore, P, = K, = KP, and p +  P, is bijective. 
Remarks. (a) A class 9 of distributions on (Q, d)  admits do as 

a sufficient o-algebra, if and only if B = B(K,  M )  with M = 9/do and 
K = P(-Id,), assuming the existence of a full conditional kernel. 

(b) An analogue to Proposition 2 in the situation with a statistic T and 
a factorized kernel is obvious. 

(c) B(K) is a simplex. Each element in 9 ( K )  has a unique integral 
representation 

and ex (B (K)) c {K,; o E 9). P E ex (9 ( ~ ) ) c = .  P (w E B; K, = P) = 1 (cf. Dyn- 
kin [4], Th. 3.1). 
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I The following proposition is obvious but important in the statistical 
I analysis. 

PROPOSITION 3. If M c M1 (a, do) is (boundedly) complete, then do is 
(boundedly) complete and suficient for P(K, M). Especially, do is a minimal- 

l suficient a-algebra in this case. 
I 

The following examples list up some typical situations. 

EXAMPLES 

1. Exchangeable distributions. Let (8, d)  = (X, $8)k, y, the permutation 
group operating on- a, do = ( A € B k ;  nA = A, V R E Y ~ )  the 0-algebra of 
symmetric (exchangeable) sets and 9: = {P E M1 (Q, 4; PB = P ,  V ~ E  E yk) the 
set of all symmetric (exchangeable) distributions on (a, d). 

For f E 9,,(G!, d) define 

Then 9 = B(K) and, especially, by Proposition 3, do is a complete and 
sufficient o-algebra for @. For x = (x,, .. . , x , ) ~  5t holds 

any symmetric distribution P has the integral representation 

and (K. j x s a) are the extreme points of 9. 
It is intuitively obvious and can be made precise that the l-dimensional 

marginals of K, are close to the products 

w.r.t. variation distance, e.g. for I 4 k, and, therefore, by (6) the I-dimensional 
marginals of any PEP are close to mixtures of i.i.d.-probabilities (cf. Diaconis 
and Freedman [2]) for E 4 k. 

If 9, = {P(k); P E M ~  ( X ,  $8)) c B are the i.i.d.-products and 9, = {Pa; 
Pa = jPk a (dP), ol E M 1  ( M 1  ( X ,  B))) are the mixtures of products (also called 
P D M -  (positive dependent by mixture) distributions), then 9, - 9, in the 
sense of domination and again do is complete and sufficient for 9 , ,  9,. Many 
further subfamilies 9(K, M) c 9 are known for which do still is complete 
(cf. ~71) .  

If (X, 9) = (R1, a'), then do is generated by the order statistic 
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With 
k 

E =  U E,, E,: = (xEE; xi = ... = x ; < x ~ + I  < .  .. <x,} 
i =  1 

and = T;' (E,) any P EB has a decomposition 

and 
. . .. . 

Conversely, the maping 

where Si(P,) is the symmetrization on E ,  is bijective. Especially, a submodel 
P, = PIX, Ad) c 8 is symmetrically complete if and only if P,/Ei is complete, 
1 < i d k. This remark generalizes a'result of Bell and Smith [I] concerning the 
set of all "continuous" probability measures in 9. 

2. lnvcariant distributions. Example 1 extends immediately to the class 9 
of all distributions invariant w.r.t. more general groups G of transformations 
on (Q, d). For amenable groups it can be shown that the n-algebra -- 
do = n 1 (g), I (g) the 9'-completion of all g-invariant sets, is sufficient for 9. 

EG 
If G admits a normalized Haar-measure, then K, is the normalized Haar- 
-measure on Gx and do is equivalent to the G-algebra of G-invariant sets. 

If e.g. G = 0, is the orthogonal group on Rk, then T: Rk+[O, m), 
Tx = 1x1' = C xf, the squared length, is maximalinvariant w.r.t. G and Kt is the 
Lebesgue-measure on the surface of the ball of radius t. For A4 c M1 (LO, a ) ,  
8 [0, m)) T is sufficient and complete for the submodel 9 ( K ,  M) if and only if 
M is complete. If 9, = (NE2; 0' > 0) c 9, then from a basic result in 
exponential families T is complete and sufficient for 9, or, equivalently, 
9: = M; the scale family generated by a,~;-distribution, is complete. 

3. Families generated by i.i.d.-models. (a) If 9, = (B(1, 8)@); BELO, I]} is 
a Bernoulli-experiment of order k on (a, d) = ((0, l Ik,  B({O, l)k)), then 
T: Q+Y: = (0, ... , k ) ,  

is sufficient and complete for 9, and, for t E k: 



The generated maximal family is the set of all distributions 

(cf, Lauritzen 161, 20). The I-dimensional distributions of KT(,, are "close" to 
9 (1, ~(x))"] for I 4 k and, therefore, B(K) is "close" to the mixtures of P, 
concerning low dimensional marginafs. M, : = (W (k, 8); 0 E [O, 11) charac- 
terizes the Bernoulli-experiment 9, in B(K) .  The set M of all possible 
distributions p = Ip,, . .. , p,) of T w.r.t. mixtures of 8, can be described as 

where (c,, c,, . . .) is any completely monotone sequence, A the difference 
operator (cf. Feller [ 5 ] ,  p. 224-227). 

(b) If (P , d)  = (Rk, ak) , T ( x )  = (Exi, z x ; )  = IT1 (x) , (T, (x)), then T is co- 
mplete and sufficient for 

and the conditional distribution K, is the uniform distribution Ak,r on the 
(k-2)-sphere ( T  = t )  in Rk. Again the I-dimensional marginals of KT(,, are 
dose to 

for I < k, implying that the I-dimensional marginals of any P E B ( K )  are close 
to the mixtures - 

Let K, R be two full kernels fiom (X, do) to (X, st) and let d, denote the 
half total variation d, (P, Q) = IfP - QII. 

~ ~ ~ ~ I T I ~ N  4. (a) d, (P(K), P(R)) = inf d, (K,, R,), if (a) E do for 
maR 

eel € 0. 
(b) If T: 0 + E K = (KJ, R = (R,) are full kernels from (Y, a) to (X, d), 

then 
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. P r o  of. We consider only case (b). For the half total variation distance we 
use the representation 

d,(P, 0 )  = inf{W(x # y); WEM(P, Q)], 

where M(P, Q) denotes the set of all probability measures on D x SZ with 
marginals P, Q. For P E 9' (K), Q E 9 (R) holds 

W(x # y) = J w ( ~  # y)l Tx = t ,  Ty = s)dWTiT(t, s) 
(12) - a infW(x #yITx = t ,  T y = s ) .  - 

-- - r;s 
Since W c  [To n1 = t, TonZ = S )  E M ( K t ,  RJ, it follows, for t # s, 

W(x # y I Tx = t ,  Ty = s) = 1 implying that 

W ( x  # y) 2 inf W(x # y17k = t, 5 = t )  >infllK,-R,H. 
t t 

. - - -  
Therefore, 

d,(P,Q)>infllK,-R,[I for any pair P , Q ,  
r 

implying 

d,(g(K), P(R)) 3 infllKt--R,lI. 
t 

Since Kt E 9 (a, R, E P(R) for all t, the converse is obvious. 
Proposition 4 remains true for the distance between 9(K, M), P ( R ,  M) 

under topological assumptions, , if t 4 &(A), t -t R, (A)  is continuous for 
all A and if for all t c Y  there exists a sequence (pn) c M such that 

P 
Pn --, E[tln 

PROPOSI~ON 5.  If P ,  Q E P (K) with Po: = PT, Qo: = QT, then 
Q e P-Q, < Po and dQ/dP = hooT with h,: = dQo/dP,. 

P r o  of. If Qo = hoP,, then 

Q = jK,Qo ( 4  = @,ho (t) Po ( 4  = J K T , ~ , ~  T(x)  P(dx) = (hO 0 7') P. 

Conversely, if Q 4 P, then Q, = QT < P.= = Po. 
- 

Remarks.  (a) If (Q, d)  = (X, a)("' is an infinite product of Polish spaces, 
B is the class-of exchangeable distributions and do is the B-algebra of 
permutation syfnmetric sets, then for Q, P E P ,  Q 4 P-Qo = Q/do 4 P/do 
= Po, i.e. iff the mixing measures are continuous. 

(b) If P E P  = 9 ( K )  and (Pt)teR~ is a P continuous path in 9 with Po = P and 
tangent vector h, i.e. dPt/dP = 1 + th + tv,, h E I? (P), jr? dP + 0 for t + 0, 
then by Proposition 5, the tangent cone in -PEP is given by 

(13) . T (P, 9): = {h E L? (P); h is a tangent vector) 

2 - Probability 10.2 
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This tangent cone gives the local description of the model B in P and is of 
interest in finite and in asymptotic estimation theory (cf. [9]). If e.g. B are the 
exchangeable distributions on p, then TIP, 9') is equal to the set of all 
symmetric elements of @ (P) with JhdP = 0. For the subclass 9, = {P(k'; 
P E  M1 ( X ,  g)) the tangent cone 

k 

T(f lk) ,  B,) = ( h(xJ ;  hfC(P), ShdP = 0) 
1= 1 

is essentially smaller. 

3. Cwstmctiw of optimal tests. Let K = (Kt) ,  R = (R,). be full kernels, 
P ( K ) ,  P ( R )  be the corresponding maximal families and consider testing the 
hypotheses B ( K ) , -  B(R) at level G I E [ O ,  I]. 

PROP~ITION 6. Let cp? be the NP-test at level u for (K,}, (R,] ,  t ~  Y and 
rp*(X): = cp+(,)(x). Then rp* is a UMP-test at level o! for P(K), P(R). 

Proof. If one chooses a constant randomization for the NP-test rp:, 
then it is clear that rg* is measurable. Let rp E @, (9 (K));  then Kt E 9 (K) implies 
that JrpdK, 6 a and, therefore, jcpd-Rt < jcp: dRt = jrp* dR,. This implies, for 
any Q = R Q ~ E ~ ( R ) ,  

SP dQ = 5 (Sa d m  Q, (dt) juv* dR3 Q01dt) = 1rp4 dQ. 
Remark. If (Y, 8) is a topological space, if t + l r p d ~ ,  is lower semicon- 

tinuous for all test functions cp and if M c M1 (Y, a) is a subset such that for all 
t~ Y there exists a sequence (pn) c M converging weakly to E { ~ ~ ,  then the 
conclusion of Proposition 6 remains tnie for testing the submodels B ( K ,  M) 
against B (R). 

Let X , ,  X1 be sets of full Markov kernels from (Y, 8) to (X, d)  and 
define 

(14) 9 )  9 )  i = O , 1 .  
, K E X i  

The following generahation of Proposition 6 is obvious. 
COROLLARY 1. Let rp: be a UMP-test at level or for X , , , :  = ( K t ;  K E A?,), 

XI,,:- = { K t ;  K  €TI), t E I: If there exists a measurable version rp* w.r.t. 
B ( X o ) ,  9 ( X 1 )  of cp&,)(x), then rp* is a UMP-test at level or for P(X,) ,  
w f - 1 ) .  

In other words, Corollary 1 says that conditionally UMP-tests are UMP. 
P ~ o ~ o s r n o ~  7. If cp: is a mximin test at level a for X,,,, XI,, and i f  cp* is 

a measurable version cp",(,)(x), then cp* is a maximin test for 9 ( X 0 ) ,  B(X,). 
P r o  of. If rp E @, (9' (X,)), then also rp E @, (X,, ,), implying that 

inf EQcp < inf Srpd~ ,  < i d  J r p * d ~ ,  - for all t E Y. 
Q ~ p ( x i )  KtsjP1 ,  t KzoJ1,t 
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Therefore, 

inf E Q q  = inf jifrpdKJp(dt)= infinfJVdK, 
QEQWJQ~) K ~ f l l , p ~ M l ( Y , t B )  KEZI ~ E Y  

< inf infjcp*dK,= inf E Q q * .  
K E T I  teY Q~b(X11 

Similarly, for further optimality criteria like Bayes tests and minimax tests, 
it can be shown that testing theory can be reduced to the construction of 
optimal tests for the conditionid distributions. - 

-- --  

, .  4. M'VU-Estimation of real functionsnls. Let, for M c M 1  (Y, a) and X a set 
of full kernels, 0 , ( 8 ( ~ ,  M)) denote the unbiased estimators of zero w.r.t. 
P ( X ,  M): = 8 (K, M). The following characterization is obvious. 

K& 
LEMMA 8. (a) Do (9 (K)) = (f EL' (iP(IQ), 1 f dK ,  = 0, V ~ E  Y), 

- (b) If M c M' (E: I )  is complete, then D ,  (9 (K, M)) = { f E E (P (K, 1W)); 
Sf d K ,  = 0 EM 1, 

(E) I f  f E I2 (9 (X)), then f E Do (9 (XI)= f E Do (KJ, Y t  E E 
(d) rf f = +OTED,(P(K)), t h n  f = 0. 

I 

From the completeness and sficiency of T for P(K,  M), for M  cor6plete 
I , one obtains 

PR~POSITION 9. If M c M1 (Y, 9J) is complete hnd f E L? (9 ( K ,  M)) ,  then: 
f is UM W @r its expectation)* f = $0 T [B(K, M)] for some t,b E L2 (M). 

( Let now A? be a set of full kernels, M c M 1  (Y, @) and 9 = 9 ( X ,  M). Any 
element P E P  can be identified with a pair (K, p) E X x M. Let g: X +R1 
be a functional we want to estimate, and let D, = D g ( 9 )  denote the unbiased 
estimators of g. If A4 is complete, then optimal estimators in the conditional 
models X , ,  t~ I: are optimal w.r.t. 9. 

PROPOSITION 10. If 9 = P ( X ,  M), if M is complete and g :  3f +R1, then 
(a) f E Dg 3 f E Dg (KJ for M a.a. t E E: 
(b) Iff * E D, is U M W  w.r.t. Kt for M a.a. t E I: then f * is UMVU w.r.t; 

s = P ( X ,  M). 

Proof. (a) If for all Q E ~ ( K ,  M), Q = (K, Q,), EQf = j(jfd~JQ,(dt) 
= g (K), then, by completeness of My j f dK, = g (K) [MI. 

(b) follows from (a). 
If M is not complete and 9 = P ( X ,  M), then typically'there wil l  be no 

UMVU-estimators. 
PROPOSITION 11. Let g: 2 f + R 1 .  Then: 
(a) I f f  is MVU for g in Q = ( K ,  Q , ) E ~ ,  then Sf dK, = g(K)[Q,]. 
(b) I f f  * is M VU for g in Kt w.r.t. X, for Q, a.a. t E E: then f * is M W for 

g in Q = (K, Q,) w.r.t. 9. 
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(c) Iff * is UMVU for g w.r.t X,,  V ~ E  I: then f * is UMVU for g w.T.~. 9. 
( d )  If, contrersely, f * is UMVU SOP g w.r.t. P, i f f  ,8 (K;) is M W  in Kt w.r.t. 

X ,  for all t E Y and i f  there exists a measurable version o f f  g{x) ( K ,  x), then f * is 
UM W for g w.r.t. X,. 

Proof.  (a) I f f  is MVU for g in Q = (K, Q,), then let h: = f-EQ(f]T) 
+ s ( K ) .  

h E D, since, for P = ( R ,  Po) E B holds, 

If Q {Ee( f lT)  # g (K)) > 0, then EQ (h - g  (K))2 < EQ (f - g  (K))' in cont- 
radiction to the assumption. Therefore, f d ~ ,  = g'(K) [Q,]. 

(b), (c) are consequences of (a). 
(d) By {b) is f g(,)(K, x) MVU for g in Q = (K, Q,) w.r.t. 9 and, therefore, 

by the uniqueness of optimal estimators f * (x) = f f(,, (K, x) [Q]. 
From Propositions 10 and 11 the construction of MVU estimators of 

functions g = g (K) can be reduced to the cdnstruction of conditional minimum 
variance unbiased estimators (CMVU) in the models X,, t~ I: We finally 
establish an independence property of UMVU estimators. If M is complete, 
then T is complete and sufficient for 9 (K, h4), V K  E X .  If S is distribution free 
for B (K, M),  VK E X ,  then, by Basu's theorem, S, T are stochastically 
independent w.r.t. 9. Without the assumption of completeness of M there is the 
following independence property of statistics which are ancillary on 8 ( K ,  M). 

PROPOSITION 12. Let 9 = 9 (X, M), let a statistics S be distribution free on 
B ( K ,  M), VK E X and suflcient for 9 ( X ,  Q,), VQ, E M. If d* = $ o S  is 
a bounded U M W  for g = g(K)  for some function I), then d* and T are 
stochasticalZy independent w.r.t. 8 .  

Proof .  Let do denote the a-algebra generated by the bounded 
UMVU-estimators w.r.t. 8 .  A well-known theorem due to Bahadur implies 
that any element of L? (do, 9 )  is a UMVU-estimator w.r.t. 8. Therefore, for 
any function h such that hod* E I? (9) holds that hod* is a UMVU w.r.t. 8 and 
hod* is again distribution free on 8 (K, M), V K  E X,  and, therefore, estimates 
a function g = g (K). By Proposition 11, (a), 

EQ(hod*IT = t )  = j h o d * d ~ ,  = g ( K ) [ W  for aII Q E ~ ( K ,  M), 

implying that d*, Tare stochastically independent w.r.t. B ( K ,  Af), V K E  X.  
By a well known argument in connection with the covariance method the 

boundedness of d* = $ o S  can be replaced by the assumption that all moments 
of d* exist and determine the distribution of d*. 

$ conversely, d* and T are stochastically independent w.r.L 9, then 
EQd* = EQ(d*IT= t) = {d*dK, = g(Q) ie. g(Q) = g(K), so d* &tes a function of K. 

Example. Let 9": = {P"; P E M' (R1, B1), P symmetric around zero). 
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9" is invariant w.r.t. two groups, the permutation group y, and the 
sign group with corresponding maximal invariants TI (x) = 1x1, x € R 1 ,  and 
T, (x) = xo, x E Rn. A minimal sufficient statistic for 9" is Tfx): = Ixlo, x E Rn, 
the order statistic of Ixll, . . . , 1x.l and Kt = Pn(. I T = t) is the uniform 
distribution on {T = tj. With M: = (B")T, 9 = P ( K ,  1M) and M is complete 
since PT1 is complete and, therefore, the order statistic T2 is complete for 
(PT1)". Equivalently, T = So(T,, . . . , TI) is complete for 9". This implies that 
any function h = $0 T E I.? (9'") is a UMVU. Especially, the invariant 
U-statistics 

-- 

are UMVU estimators w.r.t. P. 
Let for 0 ~ [ 0 , 1 ]  and t = ( t  ,,..., t,), O < t , <  .... <t,  

d 

By Proposition 6 the conditional test q, is a UMP test for 9 ( K I l 2 )  = B(K) 
against P(K,), 0 3 *.Clearly, the conditional test is the sign-test and is 
independent of 8. This implies that the sign test is UMP for (the generated 
models) 

8, = U 9 (K,) against 9, = U P(K,). 
e 6 112 B > 112 
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