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Abstract. We conctruct statistical models by the assumption that
certain statistics or g-algebras are sufficient for the model. This point
of view has been developed especially by Lauritzen and has led in
connection with the notion of partial sufficiency to very interesting
characterization resuits of de Finetti type. In this paper we investigate
some consequences for the estimation and test theory of models
of this type.

1. Introduction. A general formulation of de Finetti’s theorem is the
following: ‘ -
If

(2, )= 3 X, B
Toi=1
is a product of Polish spaces and Pe M* (Q, o) is an exchangeable probability
measure on (Q, /), then conditionally on the exchangeable o-algebra
sy o, Pis iid. and o, is sufficient for the set 2 of all exchangeable
probability measures. '

The extreme points of & are given by the infinite products Q,
QeM!(X, #) and there holds a corresponding integral representation. Exten-
sions of this result, including a broad field of applications, have been proved
under the notion of partial sufficiency; the role of <7, then is taken by the
partial exchangeable o-field. The importance of the sufficiency aspect has been
pointed out in full generality by Dynkin [4]. Lauritzen [6] pointed out the
relevance of the sufficiency and partial sufficiency aspect for the construction of
statistical models leading especially to a general characterization of exponential
families. Diaconis and Freedman [2], [3] showed that many important
characterization results can be established in this frame work, so e.g. the
characterization of orthogonally invariant distributions on (2, &) = (R*, #%)
as mixtures of iid. N (0, 6?) sequences.
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Let now (2, &) be any meaéure’ space, let &/, = o/ be a sub g-algebra and
K be a Markov-kernel from (2, /) to (2, «#), K,: = K(w, *), e Q. Define

1) 2 (K): = {PeM" (2, «); K = P(|,)[P]}

the set of all probability measures .on (£, o#) such that K is a regular
conditional distribution of P on &/, If T: (2, o)—(Y, #) is a surjective
mapping, {t}e# for all teY, and if K is a Markov kernel from (Y, #) to
(2, &), then with K,: = K(t, ") and &/, = a(T) c o, the g-algebra generated
by T, we use the notation in (1) also for the factorized kernel and define in this
case-

2) 3”(K).=={PEM1(Q;‘&¢); K,=P(|IT=9[P"]}.

" By definition 2 (K) is the largest class 2 of probability measures on (2, o),
such that o/, resp. T are sufficient for 2 and K is a conditional distribution
given o/, resp. T. #(K) is called the maximal family generated by K by
Layritzen [6] considering the discrete case. It seems to be not a severe
restriction from the point of view of pos51b1e applications to restrict to (regular)
conditional distributions.

In section 2 we introduce some subsets of #(K) and extend some basic
relations for these models due-to Lauritzen [6] in the discrete case. Further-
more, we determine the total variation distance between two different maximal
families and describe the tangent cone of 2 (K). In section 3 we derive some
basic results for the testing theory of these models and establish in section
4 some construction methods for optimal MVU estimators in models related to
2 (K). The main point in these results is to establish the relation to optimality
within the more simple conditional models.

2. Models admitting sufficient statistics. If K is a Markov kernel from
(X, o) to (X, o), then a natural question is, whether K is the conditional
distribution of any P given ./, The following lemma uses a well known

~ property of conditional expectations for the characterization. There are several

related characterizations of conditional expectation operators by positivity and
contraction properties in the literature (cf. Neveu [8]).

Lemma 1. 2(K) # G«»EIPOEM1 X, .910) such that for fe@,,(d)
geB,(A,) — the bounded of resp &, measurable functzons -

€) K(fg) gKf [Po).
Proof. “=” If Pe?(K), then define P,: = P/ ,. Since
Kf (@) = [f(x)K,(dx)e By(A,),

(3) is a well known property of conditional expectations.
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“«=" Define P: = KP,, ie. P(4)= _[K (A)Py(dw), Aeof. By (3), K*f
= K(Kf) = (Kf)(K1) = Kf, ie. K2=K is a projection. Therefore, E.fg

= [K(fg)dP, = {g(Kf)dP, = [g(K?()dP, = [K (gKf)dP, = [g(Kf)dP, by.

definition of P. This implies that Kf = E,(f|.%).

We assume in the following that each occurring Markov kernel K satisfies
(3) for all Pye M* (2, o/,,) and call kernels K with this property full conditional
kernels. For full conditional kernels o/, = {4e.s/; 1, = K1,}; under (3) this
equality holds P = KP, almost surely and we would have to restrict in the

following to the subclass of all elements of #(K) dominated by-P = KPO. If
K is a Markov kernel from (Y, &) to (@, &), T:(Q2, /) (Y, #) as in the’

introduction, then K is called a full condztlonal kernel (given T) iff, for all te Y,
K{T=t}=1. . _
For M-« M* (Q do) define now

@ ' P (K, M): = {P,: = K,; ue M}.

PRrOPOSITION 2. If M < M'(Q, s/,), then:

1. o, is sufficient for #(K, M).

2. 2(K)=2(K, M* (2, «,)).

3. M@, o) —  P(K)is bijective; the inverse mapping is the retrac-

Cp*Pu=Kp

tion P— P/,

4. P(K)={PeM!(Q, /); P = KP}. o

Proof. 1. In the proof of Lemma 1 it was shown that K = P, (-|«/) for
peM, ie. the sufficiency of «/, for 2(K, M).
©2,3,4. If Pegz(K), then K = P(-|#/,) and therefore, with P,: = P/</,,,
P =KP, = KP,ie. Pe ?(K, M (2, o). This implies: Z(K) « 2(K, M* (@2, o))
and Q?(K) c {PeM'(Q, «); P = KP}. The converse mclus1ons follows from 1.

If yeM (Q, ) and Ae s/, then

P,(4) = [K,(4) p{dw) = {1, u(dw) = #(A)
ie. P Ao = K- Therefore, P, = K, KP and u—>P, is bl_]ectlve
Remarks. (a) A class 3? of d1str1butlons on (Q, ) admits o, as
a sufficient ¢-algebra, if and only if # = #(K;, M) with M = P/o/, and
K = P(-|«,), assuming the existence of a full conditional kernel.
- (b) An analogue to Proposition 2 1n the situation with a statistic T and
a factorized kernel is obvious.

() Z#(K) is a simplex. Fach element in g’(K) has a unique integral

representatlon

) P(4) = {K,(A) Py(dw), Py: = P/, Aco, |

and ex (#(K)) c {K,,; weQ}. Peex (P (K))«>P{we®; K = P} = 1 (cf. Dyn-

kin [4], Th. 3.1).
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The following proposition is obvious but important in the statistical
analysis.

ProrosiTION 3. If M < M LR, o) is (boundedly) complete, then of is
(boundedly) complete and sufficient for (K, M). Especially, o, is a minimal-
sufficient o-algebra in this case.

The following examples list up some typlcal situations.
EXAMPLES

1. Exchangeable distributions. Let (Q, &) = (X, Q)" 7, the permutation
group operating on Q, o/, ={Ae#*; 1A= A, Vney} the o-algebra of
symmetric (exchangeable) sets and #: = {Pe M'(Q, &); P* = P, Vney,} the
set of all symmetric (exchangeable) distributions on (2, d)

For fe¥,(Q, o) define

Kf(x)'— Z f(nx), xeQ.

NEvk

Then 2 = #(K) and, especially, by Proposition 3, &, is a complete and

sufficient o-algebra for 2. For x = (x,, ..., x,)€Q holds
K, = kyﬁznsn(x)’

any symmetric distribution P has the integral representation
6 _ P =[K,P(dx)

and {K,; xeQ} are the extreme points of 2.
It is intuitively obvious and can be made precise that the I-dimensional
marginals of K, are close to the products :

(L5)"
—_ gx ,
ko™

w.r.t. variation distance, e.g. for | <€ k, and, therefore, by (6) the /-dimensional
marginals of any Pe 2 are close to mixtures of ii.d.-probabilities (cf. Diaconis
and Freedman [2]) for ! < k. .
T If 2, ={P®;, PeM' (X, #)} =P are the iid.-products and 2, = {P,;
P, = [P*a(dP), ae M* (M (X, %))} are the mixtures of products (also called
PDM — (positive dependent by mixture) distributions), then #; ~ &, in the
sense of domination and again &/, is complete and sufficient for 2, #,. Many
further subfamilies 2 (K, M) = 2 are known for which &/, still is complete
(cf. [7D).
If (X, #) = (R, #'), then o/, is generated by the order statistic

T:R > E:={xeRx; < ... < x}, T(%): =Xy = X1y, - » X
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With |
E= U E E:={x€E;x;=...=X%; < Xi+1 <... < X}
and Q;: = T;'(E) any Pe# has a decomposition
P= Zk; P, P:=P/Q,

i=1

and
S : k k!
g PT=Y% — P/E:.
i=1 b
Conversely, the maping
' k
(8) MY (E)y»?, P=) P> Y S:(P),
i=1

where ‘S;(P)) is the symmetrization on E, is bijective. Especially, a submodel
P2, = P(K, M) c 2 is symmetrically complete if and only if 2,/E; is complete,
1 € i < k. This remark generalizes a result of Bell and Smith [1] concerning the
set of all “continuous” probability measures in 2.

2. Invariant distributions. Example 1 extends immediately to the class 2
of all distributions invariant w.r.t. more general groups G of transformations

on (2, o). For amenable groups it can be shown that the a-algebra

Ao=1 (g) I (g) the #-completion of all g-invariant sets, is sufficient for 2.
geiG
If G admits a normalized Haar-measure, then K, is the normalized Haar-

-measure on Gx and &, is equivalent to the a-algebra of G-invariant sets.

If eg. G=0, is the orthogonal group on R¥, then T: R*-[0, o),
Tx = |x|* = ) x?, the squared length, is maximalinvariant w.r.t. G and K, is the
Lebesgue-measure on the surface of the ball of radius t. For M < M*! ([0 o0),
[0, 0)) T is sufficient and complete for the submodel 2 (K, M) if and only if
M is complete. If 2, = {N¥,:; 6% >0} = #, then from a basic result in
exponential families T is complete and sufficient for #, or, equivalently,
P7 = M, the scale family generated by a- xZ-distribution, is complete.

3. Families generated by i.id.-models. (a) If 2, = {#(1, O); 6€[0, 1]} is
a Bernoulli- experlment of order k on (@, &)= ({0, 1}*, 2({0, 1}*)), then

T Q-Y = {0 }

T(x): = Zk: X;

is sufficient and complete for 2, and, for teY,
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! i =5 (x).
(0

The generated maximal family is the set of all distributions

ﬂ-u;c(x))’ peM(Y)
()

(cf. Lauritzen [6], p. 20). The I-dimensional distributions of K are “close” to

A1, T(x))“’ for I € k and, therefore, 2 (K) is “close” to the mixtures of 2,
concerning low dimensional marginals. M,: = {#(k, 0); 0[O0, 1]} charac-
terizes” the Bernoulli-experiment 2, in 2(K). The set M of all possible
distributions p = (py, ..., p) of T w.r.t. mixtures of 2, can be described as

K, (x) =

© P,(x): =

(10) = (=i,

where (cy, ¢y, ...) is any completely monotone sequence A the " difference
operator (cf. Feller [5], p. 224-227).
(b) If (2, o) = (R*, %), T (x) = (Zx,, sz) = (T (x), (T, (x)) then T is co-

- mplete and sufficient for

{N a2, ,ueRl 0}

" and the condmonal d1str1but10n K, is the unlform dlstnbutlon Ar,: on the

(k—2)-sphere {T = t in R*, Again the l-d1mens1ona1 margmals of K are
&)

close to
o
(1 T, (), 1T:(x))

_for I < k, implying that the I-dimensional margmals of any Pe.@(K) are close

to the mixtures -

i

“Let K; R be two.full kernels fiom X, .910) to (X, &) and let d, denote the
half total variation d,(P, Q) = ||P—-Q]|.

ProposiTION 4. (a) d,(?(K), #(R)) = inf d,(K,,, R,), if {w}est, for
’ ’ we

wel. . ‘
(b) If T: 2-Y, K =(K,), R =(R,) are full kernels from (Y, %) to (X, &),
then

dv(g(K)! g(R)) = lnfdv(Kt’ Pt)‘

teY
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Proof. We consider only case (b). For the half total variation dlstance we
use the representahon ‘

d,(P, Q) = lnf{W(X¢y), WeM(P, Q)},

where M (P, Q) denotes the set of all probability measures on Q x Q w1th
marginals P, Q. For Peg’(K) Qe?/”(R) holds

W(x #y) = jW(x £ P T =1, Ty = )dWDT(t, )
1an(xaéy|Tx—-t Ty—s) , -
T s
- Sincé  W(|Ton, =t,Ton, = s)eM(K,, R,), it follows, - for . t#s,
Wx#£ylTx=t, Ty=5)=1 1mp1y1ng that ‘ = '
W(x # y) me(x # yI'Dc =t, Ty = t) >1nf||K ~R ||

t

12 -.

Therefore," - . _
" 'd,(P, Q) > inf|K,—R,||", for any pair P,Q,

4,(2(K), # (R) > inflK, =R}

.- Since K,e?(K), R,e #(R) for all t, the converse is obvious..

" Proposition 4 remains true for the distance between £ (K, M), #(R, M)
under - topological ‘assumptions, , if ¢t— K,(A4), t— R,(A) iscontinuous - for
all A and if for all teY there exists a sequence (u,) =M such that
My 2’8{:}

ProposiTioN 5. If - P, QeP(K) with P,:=PT, Q.= .QT,- then
Q < P<=Q,< P, and dQ/dP = hyoT with hy: = on/dPo. .
Proof If Q, = hyP,, then

Q = [K,Qo(dr) = [K o (1) P (dt)—IKT(x)h OT(x)P(dx) (hooT)P-_

Conversely, if Q < P, then @, = Q" < PT = P0

“Remarks. (a) If (@, &i) (X, 33)‘“’ is an 1nf1n1te product of Pohsh spaces,
# is the class cf exchangeable distributions. and A is the c-algebra  of
permutation symmetric sets; then for Q, Pe#?, Q < P<Q,= 0/, < P/,
= P,, ie. iff the mixing measures are continuous. .

(b) f Pe? = #(K) and (P, is a P continuous path in 2 with Py=Pand
tangent vector h, ie. dP/dP = 1+th+tr,, he 2 (P), jr,z dP—0 for t—»O
then by Proposmon 5, the tangent cone ‘in Peﬂ is given by ‘

(13) ) T(P 9) = {heLZ(P) i a tangent vector}
= {h !//OTELZ(P) j'th 0}.

2 — Probability 102
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* This tangent cone gives the local description of the model 2 in P and is of
interest in finite and in' asymptotic estimation theory (cf. [9]). If e.g. £ are the
exchangeable distributions on Rk, then T(P, %) is equal to the set of all
symmetric elements of I?(P) with fhdP = 0. For the subclass 2, = {P%;
PEM 1 (X %)} the tangent cone ‘

(P, 91)—{2 h(x): heLz(P) jhdp 0}

is essentially smaller

'3. Construction of optlmal tests. Let 'K = (Kt), (R,). be full kernels,
2(K), 2(R) be the corresponding maximal families and consider testing the
hypotheses 2 (K),- #(R) at level a€[0,-1].

PROPOSITION 6. Let ¢F be the NP-test at level « for {K,} {R,}, te Yand

-(p (X): = @¥y(x). Then @* is a UMP-test at level a for #(K), ?(R).

Proof. If one chooses a constant randomization for the NP-test ¥,
then it is clear that ¢* is measurable. Let ¢ € &,(# (K)); then K, € 2 (K) implies
that {pdK, < o and, therefore, f@dR, < j'(p, dR, = j'qo dR,. ThlS 1mp11es, for
any 0 = R, 2 (R), |

fodQ = [(jodR)Q, () < .f‘(.f @*dR) Qo (dt) = fo* dQ.

Remark. If (Y, #) is a topologlcal space, if t—>j'(de is lower semicon-
tinuous for all test functions ¢ and if M = M*(Y, .@) is a-subset such that for all
teY there exists a sequence (y,,) < M converging weakly - to &g, then the
conclusion of Proposition 6 remains true for testmg ‘the submodels .@(K M)
against 2 (R).

“Let Ay, A, be sets of full Markov kernels from (Y, ,@) to (X ,szl) and
define ‘ : L

" (14) |  P)= U 2®), i-‘=o,1_'l

KeX;

The following generalization of Proposition 6 is 6bvious

- COROLLARY 1. Let ¢} be a UMP-test at level o for o : = {K; Ke Ay},
Hyo={K,; K et J,teY. If there exists a measurable version ¢* w.r.t.
P (K o), P (A ) of ©F () (x), then (p* is a UMP-test at level o for P (A o),
P (A ).

In other words, Corollary 1 says that condltlonally UMP tests are UMP

PROPOSITION 7. If @F is a maximin test at level o for H o1, H 1, and if o*is
a measurable. version @7 )(x), then @* is a maximin test for 9’(% o) P (X ).

Proof. If (pecb (37‘(1’ 0)) then also @pe®,(X,,,), implying that

inf Ey¢< inf [pdK,< inf - j(p*dK for all teY.

QeP (1) Keed'y,¢ o KeeXy,e
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Therefore, , :
inf E o= inf j(j(de,)u(dt) = inf mfj'qodK

QeP(X1) KeJ("; neML(Y, Q) ) KeX'iteY

< inf inf[p*dK,= inf Egq*.

Keit'iteY QeP (K1)

Similarly, for further optimality criteria like Bayes tests and minimax tests,
it can be shown that testing theory can be reduced to the constructlon of

: optlmal tests for the conditional distributions. -

4. MVU-Estimation of real functionals. Let, for M = M* (Y, %#) and Ji’ a set
of full kernels, Dy(% (A", M)) denote the unbiased estimators of zero w.r.t.
P, M):= | ) 2 (K, M). The following characterization is obvious.

Kext

LEMMA 8. (a) DO(QP(K)) {fel(?(K), [fdK,=0, VteY}.

S (b) If M = M*(Y, &) is complete; then Dy (2 (K, M)) = {fel(?(K, M))
ffdK, = 0[M]1}. ,

©) If fe} (P (X)), then fEDo(QP(x’))-a‘feDo(K,) VteY.

(d) If f=yYoTeD 0(?(K)), then f =

From the completeness and sufﬁcnency of T for §°(K M) for M complete
one obtains

PROPOSITION 9. If M < M (Y, #) is complete and fel (2 (K M)) then:
f is. UMWVU (for its expectation)<>f = yoT[#(K, M)] for some ye2(M).

Let now ¢ be a set of full kernels, M = M* (Y, #) and Z = # (A, M). Any
clement Pe# can be identified with a pair (K, p)e A" x M. Let g: A ->R!
be a functional we want. to estimate, and let D, = D (%) denote the unbiased
estimators of g. If M is complete, then optlmal estlmators in the condltlonal
models S, te Y, are optimal w.r.t. 2. :

PROPOSITION 10. If @ = 2 (A, M), if M is complete and g A —rRl then '

(a) feD =feD,(K,) for M aa. teY

(b) Iff*eD is UMVU wrt. K, for M a.a. teY, then f* is UMVU Wir.t:
P=P A, M)

Proof (a) If for all Qe (K, M) 0=(K, Qo) EQf j'(j'de,)Qo(dt)
= g (K); then, by completeness of M; | f dK (K) [M]

(b) follows from (a). :

If M is not complete and Z = 9(1’ M) then typlcally there W1ll be no
UMVU—estlmators .

PRrOPOSITION 11. Lez g: X —>R. Then

(@) If f is MVU for g in Q =(K, Q,)€, then jf dK g (K)[Q,]
(b) If f*is MVUforng wrt. A, for Q, a.a. teYthenf* stVUfor_

gin Q= (K Qo) wrt. P
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(© If f*is UMVU for g wrt A, VteY, then f* is UMVU for g wr.t. 2.

(d) If, conversely, f* is UMVU for g wr.t. 2, if f¥(K,")is MVU in K, w.r.t.
A, for all te Y and if there exists a measurable version of ¥ (K, x), then f* is
UMVU for g wrt. A,

Proof. (a) If f is MVU for g in Q (K, Qo), then let h: = f—E,(f|T)
+ g (K).

heD, since, for P = (R, Py)e# holds,

“ E,h= E,f—E, Eg(fIT)+g(K) = g(R)—[([fdK,) Py (dt)+g(K)
o - =gR)-[fd(KP)+g(K) = g(R).

If Q{E,(fIT) #g(K)} >0, then E,(h= g(K)) < Ey(f—¢(K))* in cont-
radiction-to the assumption. Therefore, [fdK, =g(K) [Qo] '

(b), (c) are consequences of (a).

(d) By (b)is f$ (K, x) MVU for g in Q = (K, Qo) Ww.r.t. .@ and therefore,
by the uniqueness of optimal estimators f*(x) = 5K, x)[Q]- A

From Propositions 10 and 11 the construction of MVU' estimators of
functions g = g(K) can be reduced to the construction: of conditional minimum
variance unbiased estimators (CMVU) in the models ', te Y. We finally
establish an independence property of UMVU estimators. If M is complete,
then T is complete and sufficient for Z (K, M), VK e . If § is distribution free
for (K, M), VKe A", then, by Basu’s theorem, S, T are stochastically
independent w.r.t. 2. Without the assumption of completeness of M there is the
following independence property of statistics which are ancillary on 2 (K, M).

PROPOSITION 12. Let P = P (A", M), let a statistics S be distribution free on
P (K, M), VKeA" and sufficient for P (A, Q,), YQ,eM. If d* = oS is
a bounded UMVU for g=g(K). for some function v, then d* and T are
Stochastically independent wrt. 2. .

Proof Let o/, denote the o-algebra generated by - the bounded

- UMVU-estimators w.r.t. . A well-known theorem due to Bahadur implies

that any element of I?(«/,, #) is a UMVU-estimator w.r.t. #. Therefore, for
any function h such that hod* e I? (%) holds that hod* isa UMVU w.r.t. Z and
hod* is again_ dlstrlbut1on free on (K, M), VKe X, and therefore estlmates
a function g = g(K). By Propos1t10n 11, (a),

Ey(hod*|T = 1) = [hod* dK, = g(K) [M] for 511 Qey(K M)

implying that d*, T are stochastically independent w.r.t. (K, M), VKe XA

By a well known argument in connection with the covariance method the
boundedness of d* = oS can be replaced by the assumption that all moments
of d* exist and determine the distribution of d*. .

If eonversely, d* and T are stochastically independent wrt P, then
Eyd* = Ey(d*|T=1) = [d*dK, = g(Q) ie. g(Q) = g(K), so d* estimates a function of K.

Example. Let #": = {P"; Pe M'(R!, #'), P symmetric around zero}.
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#" is invariant w.r.t. two groups, the permutation group 7, and the
sign group with corresponding maximal invariants T, (x) = |x|, xeR*, and
T, (x) = x,, x€R". A minimal sufficient statistic for 2" is T (x): = |x],, xeR",
the order statistic of |[x,|,...,|x,] and K,=P"(-|T =t) is the uniform
distribution on {T = t}. With M: = (#"7, 2 = #(K, M) and M is complete

.since 27! is complete and, therefore, the order statistic T, is complete for
(#T9". Equivalently, T = So(Ty, ..., T,) is complete for 2". This implies that
any function h=yoTel?(#") is a UMVU. Especially, the invariant
U-statistics

(15) A U(x)__—; ) Z | Z f(sillxixl"‘tsikxik).
(3

ee{—1,1)" {i1,ee. 01} S {1,0eeyon}

are UMVU estlmators w.r.t, 2", :
Let for 8e[0, 1] and t-(tl, s b)), 0t < Ll £,

Z ® (Bgt,g(.) (1 B)E—t"u))
neEiI=1
. By Proposition 6 the conditional test ¢, is a UMP test for (K, ;) = (K)
against 2 (K,), 0 > %.Clearly, the conditional test is the sign-test and is
independent of 0. This implies that the sign test is UMP for (the generated
~ models)

KO,l ‘ 2,,

Py = U P (K, against 2, = |J 2(K,).

0<1/2 a>1/2
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